Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485468

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis. Doublecortin (DCX) is a microtubule-associated protein that plays a pivotal role in the development and differentiation of migrating neurons. This study utilized postmortem human brain tissue of PD and age-matched control individuals to investigate DCX expression in the context of adult hippocampal neurogenesis. Our findings demonstrate a significant reduction in the number of DCX-expressing cells within the subgranular zone (SGZ), as well as a decrease in the nuclear area of these DCX-positive cells in postmortem brain tissue obtained from PD cases, suggesting an impairment in the adult hippocampal neurogenesis. Additionally, we found that the nuclear area of DCX-positive cells correlates with pH levels. In summary, we provide evidence supporting that the process of hippocampal adult neurogenesis is likely to be compromised in PD patients before cognitive dysfunction, shedding light on potential mechanisms contributing to the neuropsychiatric symptoms observed in affected individuals. Understanding these mechanisms may offer novel insights into the pathophysiology of PD and possible therapeutic avenues.

2.
Acta Neuropathol ; 147(1): 40, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353753

RESUMO

The amyloid cascade hypothesis states that Aß aggregates induce pathological changes in tau, leading to neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the spatio-temporal divide between plaques and NFTs. This has been addressed by the inclusion of soluble Aß and tau species in the revised amyloid cascade hypothesis. Nevertheless, despite the potential for non-plaque Aß to contribute to tau pathology, few studies have examined relative correlative strengths between total Aß, plaque Aß and intracellular Aß with tau pathology within a single tissue cohort. Employing frozen and fixed frontal cortex grey and white matter tissue from non-AD controls (Con; n = 39) and Alzheimer's disease (AD) cases (n = 21), biochemical and immunohistochemical (IHC) measures of Aß and AT-8 phosphorylated tau were assessed. Biochemical native-state dot blots from crude tissue lysates demonstrated robust correlations between total Aß and AT-8 tau, when considered as a combined cohort (Con and AD) and when as Con and AD cases, separately. In contrast, no associations between Aß plaques and AT-8 were reported when using IHC measurements in either Con or AD cases. However, when intracellular Aß was measured via the Aß specific antibody MOAB-2, a correlative relationship with AT-8 tau was reported in non-AD controls but not in AD cases. Collectively the data suggests that accumulating intracellular Aß may influence AT-8 pathology, early in AD-related neuropathological change. Despite the lower levels of phospho-tau and Aß in controls, the robust correlative relationships observed suggest a physiological association of Aß production and tau phosphorylation, which may be modified during disease. This study is supportive of a revised amyloid cascade hypothesis and demonstrates regional associative relationships between tau pathology and intracellular Aß, but not extracellular Aß plaques.


Assuntos
Doença de Alzheimer , Humanos , Neuropatologia , Emaranhados Neurofibrilares , Proteínas Amiloidogênicas , Anticorpos , Placa Amiloide
3.
Acta Neuropathol Commun ; 10(1): 98, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794636

RESUMO

Dementia with Lewy bodies (DLB) is pathologically defined by the cytoplasmic accumulation of alpha-synuclein (aSyn) within neurons in the brain. Predominately pre-synaptic, aSyn has been reported in various subcellular compartments in experimental models. Indeed, nuclear alpha-synuclein (aSynNuc) is evident in many models, the dysregulation of which is associated with altered DNA integrity, transcription and nuclear homeostasis. However, the presence of aSynNuc in human brain cells remains controversial, yet the determination of human brain aSynNuc and its pathological modification is essential for understanding synucleinopathies. Here, using a multi-disciplinary approach employing immunohistochemistry, immunoblot, and mass-spectrometry (MS), we confirm aSynNuc in post-mortem brain tissue obtained from DLB and control cases. Highly dependent on antigen retrieval methods, in optimal conditions, intra-nuclear pan and phospho-S129 positive aSyn puncta were observed in cortical neurons and non-neuronal cells in fixed brain sections and in isolated nuclear preparations in all cases examined. Furthermore, an increase in nuclear phospho-S129 positive aSyn immunoreactivity was apparent in DLB cases compared to controls, in both neuronal and non-neuronal cell types. Our initial histological investigations identified that aSynNuc is affected by epitope unmasking methods but present under optimal conditions, and this presence was confirmed by isolation of nuclei and a combined approach of immunoblotting and mass spectrometry, where aSynNuc was approximately tenfold less abundant in the nucleus than cytoplasm. Notably, direct comparison of DLB cases to aged controls identified increased pS129 and higher molecular weight species in the nuclei of DLB cases, suggesting putative pathogenic modifications to aSynNuc in DLB. In summary, using multiple approaches we provide several lines of evidence supporting the presence of aSynNuc in autoptic human brain tissue and, notably, that it is subject to putative pathogenic modifications in DLB that may contribute to the disease phenotype.


Assuntos
Corpos de Lewy , Doença por Corpos de Lewy , alfa-Sinucleína , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , alfa-Sinucleína/metabolismo
4.
Biomedicines ; 10(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35625878

RESUMO

Rab GTPases (Rabs) are small proteins that play crucial roles in vesicle transport and membrane trafficking. Owing to their widespread functions in several steps of vesicle trafficking, Rabs have been implicated in the pathogenesis of several disorders, including cancer, diabetes, and multiple neurodegenerative diseases. As treatments for neurodegenerative conditions are currently rather limited, the identification and validation of novel therapeutic targets, such as Rabs, is of great importance. This review summarises proof-of-concept studies, demonstrating that modulation of Rab GTPases in the context of Alzheimer's disease (AD) can ameliorate disease-related phenotypes, and provides an overview of the current state of the art for the pharmacological targeting of Rabs. Finally, we also discuss the barriers and challenges of therapeutically targeting these small proteins in humans, especially in the context of AD.

5.
Brain ; 145(4): 1257-1263, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34999780

RESUMO

Krabbe disease is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene that causes accumulation of the toxic sphingolipid psychosine. GALC variants are also associated with Lewy body diseases, an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in Krabbe disease has pathological similarities to that in Lewy body disease, we performed an observational post-mortem study of Krabbe disease brain tissue (n = 4) compared to infant controls (n = 4) and identified widespread accumulations of α-synuclein. To determine whether α-synuclein in Krabbe disease brain displayed disease-associated pathogenic properties we evaluated its seeding capacity using the real-time quaking-induced conversion assay in two cases for which frozen tissue was available and strikingly identified aggregation into fibrils similar to those observed in Lewy body disease, confirming the prion-like capacity of Krabbe disease-derived α-synuclein. These observations constitute the first report of prion-like α-synuclein in the brain tissue of infants and challenge the putative view that α-synuclein pathology is merely an age-associated phenomenon, instead suggesting it results from alterations to biological pathways, such as sphingolipid metabolism. Our findings have important implications for understanding the mechanisms underlying Lewy body formation in Lewy body disease.


Assuntos
Leucodistrofia de Células Globoides , Doença por Corpos de Lewy , Príons , Sinucleinopatias , Encéfalo/patologia , Humanos , Doença por Corpos de Lewy/metabolismo , Príons/metabolismo , Esfingolipídeos/metabolismo , alfa-Sinucleína/metabolismo
6.
Mov Disord ; 36(8): 1744-1758, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33939203

RESUMO

Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
Brain Pathol ; 31(1): 120-132, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32762091

RESUMO

Loss of function mutations within the vesicular trafficking protein Ras analogy in brain 39B (RAB39B) are associated with rare X-linked Parkinson's disease (PD). Physiologically, RAB39B is localized to Golgi vesicles and recycling endosomes and is required for glutamatergic receptor maturation but also for alpha-Synuclein (aSyn) homeostasis and the inhibition of its aggregation. Despite evidence linking RAB39B to neurodegeneration, the involvement of the protein in idiopathic neurodegenerative diseases remains undetermined. Here, analysis of the spatial distribution and expression of RAB39B was conducted in post-mortem human brain tissue from cases of dementia with Lewy bodies (DLB, n = 10), Alzheimer's disease (AD, n = 12) and controls (n = 12). Assessment of cortical RAB39B immunoreactivity using tissue microarrays revealed an overall reduction in the area of RAB39B positive gray matter in DLB cases when compared to controls and AD cases. Strikingly, RAB39B co-localized with beta-amyloid (Aß) plaques in all cases examined and was additionally present in a subpopulation of Lewy bodies (LBs) in DLB. Biochemical measures of total RAB39B levels within the temporal cortex were unchanged between DLB, AD and controls. However, upon subcellular fractionation, a reduction of RAB39B in the cytoplasmic pool was found in DLB cases, alongside an increase of phosphorylated aSyn and Aß in whole tissue lysates. The reduction of cytoplasmic RAB39B is consistent with an impaired reserve capacity for RAB39B-associated functions, which in turn may facilitate LB aggregation and synaptic impairment. Collectively, our data support the involvement of RAB39B in the pathogenesis of DLB and the co-aggregation of RAB39B with Aß in plaques suggests that age-associated cerebral Aß pathology may be contributory to the loss of RAB39B. Thus RAB39B, its associated functional pathways and its entrapment in aggregates may be considered as future targets for therapeutic interventions to impede the overall pathological burden and cellular dysfunction in Lewy body diseases.


Assuntos
Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/metabolismo , Placa Amiloide/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Mol Neurobiol ; 57(8): 3258-3272, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32514860

RESUMO

The complex multifactorial nature of AD pathogenesis has been highlighted by evidence implicating additional neurodegenerative mechanisms, beyond that of amyloid-ß (Aß) and tau. To provide insight into cause and effect, we here investigated the temporal profile and associations of pathological changes in synaptic, endoplasmic reticulum (ER) stress and neuro-inflammatory markers. Quantifications were established via immunoblot and immunohistochemistry protocols in post-mortem lateral temporal cortex (n = 46). All measures were assessed according to diagnosis (non-AD vs. AD), neuropathological severity (low (Braak ≤ 2) vs. moderate (3-4) vs. severe (≥ 5)) and individual Braak stage, and were correlated with Aß and tau pathology and cognitive scores. Postsynaptic PSD-95, but not presynaptic synaptophysin, was decreased in AD cases and demonstrated a progressive decline across disease severity and Braak stage, yet not with cognitive scores. Of all investigated ER stress markers, only phospho-protein kinase RNA-like ER kinase (p-PERK) correlated with Braak stage and was increased in diagnosed AD cases. A similar relationship was observed for the astrocytic glial fibrillary acidic protein (GFAP); however, the associated aquaporin 4 and microglial Iba1 remained unchanged. Pathological alterations in these markers preferentially correlated with measures of tau over those related to Aß. Notably, GFAP also correlated strongly with Aß markers and with all assessments of cognition. Lateral temporal cortex-associated synaptic, ER stress and neuro-inflammatory pathologies are here determined as late occurrences in AD progression, largely associated with tau pathology. Moreover, GFAP emerged as the most robust indicator of disease progression, tau/Aß pathology, and cognitive impairment.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Estresse do Retículo Endoplasmático/fisiologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Feminino , Humanos , Inflamação/patologia , Masculino
9.
Mol Neurobiol ; 57(1): 539-550, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31396860

RESUMO

Diabetes and obesity have been implicated as risk factors for dementia. However, metabolic mechanisms and associated signalling pathways have not been investigated in detail in frontotemporal dementia. We therefore here characterised physiological, behavioural and molecular phenotypes of 3- and 8-month-old male tau knock-in (PLB2TAU) vs wild-type (PLBWT) mice. Homecage analysis suggested intact habituation but a dramatic reduction in exploratory activity in PLB2TAU mice. Deficits in motor strength were also observed. At 3 months, PLB2TAU mice displayed normal glucose handling but developed hyperglycaemia at 8 months, suggesting a progressive diabetic phenotype. Brain, liver and muscle tissue analyses confirmed tissue-specific deregulation of metabolic and homeostatic pathways. In brain, increased levels of phosphorylated tau and inflammation were detected alongside reduced ER regulatory markers, overall suggesting a downregulation in essential cellular defence pathways. We suggest that subtle neuronal expression of mutated human tau is sufficient to disturb systems metabolism and protein handling. Whether respective dysfunctions in tauopathy patients are also a consequence of tau pathology remains to be confirmed, but could offer new avenues for therapeutic interventions.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Técnicas de Introdução de Genes , Inflamação/patologia , Resistência à Insulina , Mutação/genética , Proteostase , Proteínas tau/genética , Envelhecimento/patologia , Animais , Comportamento Animal , Biomarcadores/metabolismo , Peso Corporal , Encéfalo/patologia , Ritmo Circadiano , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Habituação Psicofisiológica , Humanos , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Fenótipo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Proteínas tau/metabolismo
10.
Cell Rep ; 28(1): 65-77.e6, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269451

RESUMO

Alpha-synuclein (aSyn) accumulates in intracellular inclusions in synucleinopathies, but the molecular mechanisms leading to disease are unclear. We identify the 10 kDa heat shock protein (HSP10) as a mediator of aSyn-induced mitochondrial impairments in striatal synaptosomes. We find an age-associated increase in the cytosolic levels of HSP10, and a concomitant decrease in the mitochondrial levels, in aSyn transgenic mice. The levels of superoxide dismutase 2, a client of the HSP10/HSP60 folding complex, and synaptosomal spare respiratory capacity are also reduced. Overexpression of HSP10 ameliorates aSyn-associated mitochondrial dysfunction and delays aSyn pathology in vitro and in vivo. Altogether, our data indicate that increased levels of aSyn induce mitochondrial deficits, at least partially, by sequestering HSP10 in the cytosol and preventing it from acting in mitochondria. Importantly, these alterations manifest first at presynaptic terminals. Our study not only provides mechanistic insight into synucleinopathies but opens new avenues for targeting underlying cellular pathologies.


Assuntos
Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/genética , Sinucleinopatias/patologia , alfa-Sinucleína/genética , Animais , Humanos , Camundongos
11.
J Neurochem ; 150(5): 535-565, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31004503

RESUMO

Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".


Assuntos
Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animais , Autofagia , Linhagem Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Humanos , Técnicas In Vitro , Corpos de Lewy/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Estresse Oxidativo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/prevenção & controle , Proteólise , Transmissão Sináptica/fisiologia , Sinucleinopatias/genética , Sinucleinopatias/patologia , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/química , alfa-Sinucleína/genética
12.
Mol Neurodegener ; 14(1): 5, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30665447

RESUMO

Dementia with Lewy bodies (DLB) is an age-associated neurodegenerative disorder producing progressive cognitive decline that interferes with normal life and daily activities. Neuropathologically, DLB is characterised by the accumulation of aggregated α-synuclein protein in Lewy bodies and Lewy neurites, similar to Parkinson's disease (PD). Extrapyramidal motor features characteristic of PD, are common in DLB patients, but are not essential for the clinical diagnosis of DLB. Since many PD patients develop dementia as disease progresses, there has been controversy about the separation of DLB from PD dementia (PDD) and consensus reports have put forward guidelines to assist clinicians in the identification and management of both syndromes. Here, we present basic concepts and definitions, based on our current understanding, that should guide the community to address open questions that will, hopefully, lead us towards improved diagnosis and novel therapeutic strategies for DLB and other synucleinopathies.


Assuntos
Doença por Corpos de Lewy , Humanos
13.
Brain Res ; 1699: 121-134, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30102892

RESUMO

Alzheimer's disease (AD) pathology relevant proteins tau and beta-amyloid (Aß) exist as an array of post-translationally modified and conformationally altered species with varying abundance, solubility and toxicity. Insoluble neurofibrillary tau tangles and Aß plaques are end-stage AD hallmarks, yet may carry less disease significance compared to soluble species. At present, it is unclear how soluble and insoluble tau and Aß relate to each other as well as to disease progression. Here, detergent soluble and insoluble fractions generated from post-mortem human temporal lobe samples (Brodmann area 21) were probed for tau and Aß markers in immuno-dot assays. Measures were quantified according to diagnosis (AD cf. Non-AD), neuropathological severity, and correlated with disease progression (Braak stages). All markers were elevated within AD cases cf. non-AD controls (p < 0.05) independent of solubility. However, when considered according to neuropathological severity, phospho-tau (detected via CP13 and AT8 antibodies) was elevated early within the soluble fraction (p < 0.05 intermediate cf. low severity) and emerged only later within the insoluble fraction (p < 0.05 high cf. low severity). In contrast, PHF1 phospho-tau, TOC1 reactive tau oligomers and amyloid markers rose within the two fractions simultaneously. Independent of solubility, cognitive correlations were observed for tau makers and for fibrillary amyloid (OC), however only soluble total Aß was significantly correlated with intellectual impairment. Following the exclusion of end-stage cases, only soluble total Aß remained correlated with cognition. The data indicate differential rates of protein aggregation during AD progression and confirm the disease relevance of early emerging soluble Aß species.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Lobo Temporal/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Detergentes/farmacologia , Feminino , Humanos , Masculino , Agregação Patológica de Proteínas/metabolismo , Índice de Gravidade de Doença , Solubilidade
14.
Behav Pharmacol ; 28(2 and 3-Spec Issue): 161-178, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28252521

RESUMO

Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair ER performance: this must be rapidly corrected or cell death will ensue. Protective adaptations can boost the functional capacity of the ER and form the basis of the unfolded protein response (UPR). Activated in response to the accumulation of misfolded proteins, the UPR can halt protein translation while increasing protein-handling chaperones and the degradation of erroneous proteins through a conserved three-tier molecular cascade. However, prolonged activation of the UPR can result in the maladaptation of the system, resulting in the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative disease has attracted much interest and numerous potentially 'drugable' points of crosstalk are now emerging. Here, we summarize the functions of the ER and UPR, and highlight evidence for its potential role in the pathogenesis of Alzheimer's disease, before discussing several key targets with therapeutic potential.


Assuntos
Doença de Alzheimer/fisiopatologia , Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Doença de Alzheimer/tratamento farmacológico , Animais , Humanos , Terapia de Alvo Molecular , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo
15.
Acta Neuropathol ; 132(6): 875-895, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27770234

RESUMO

Post-mortem investigations of human Alzheimer's disease (AD) have largely failed to provide unequivocal evidence in support of the original amyloid cascade hypothesis, which postulated deposition of ß-amyloid (Aß) aggregates to be the cause of a demented state as well as inductive to tau neurofibrillary tangles (NFTs). Conflicting evidence suggests, however, that Aß plaques and NFTs, albeit to a lesser extent, are present in a substantial subset of non-demented individuals. Hence, a range of soluble tau and Aß species has more recently been implicated as the disease-relevant toxic entities. Despite the incorporation of soluble proteins into a revised amyloid cascade hypothesis, a detailed characterization of these species in the context of human AD onset, progression and cognitive decline has been lacking. Here, lateral temporal lobe samples (Brodmann area 21) of 46 human cases were profiled via tau and Aß Western blot and native state dot blot protocols. Elevations in phospho-tau (antibodies: CP13, AT8 and PHF-1), pathological tau conformations (MC-1) and oligomeric tau (TOC1) agreed with medical diagnosis (non-AD cf. AD) and Braak stage classification (low, intermediate and high), alongside elevations in soluble Aß species (MOAB-2 and pyro-glu Aß) and a decline in levels of the amyloid precursor protein. Strong correlations were observed between individual Braak stages and multiple cognitive measures with all tau markers as well as total soluble Aß. In contrast to previous reports, SDS-stable Aß oligomers (*56) were not found to be reliable for all classifications and appeared likely to be a technical artefact. Critically, the robust predictive value of total soluble Aß was dependent on native state quantification. Elevations in tau and Aß within soluble fractions (Braak stage 2-3 cf. 0) were evident earlier than previously established in fibril-focused disease progression scales. Together, these data provide strong evidence that soluble forms of tau and Aß co-localise early in AD and are closely linked to disease progression and cognitive decline.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Masculino , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Testes Neuropsicológicos , Placa Amiloide/patologia , Escalas de Graduação Psiquiátrica , Estatísticas não Paramétricas
16.
Neurobiol Dis ; 91: 105-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949217

RESUMO

Models of Tau pathology related to frontotemporal dementia (FTD) are essential to determine underlying neurodegenerative pathologies and resulting tauopathy relevant behavioural changes. However, existing models are often limited in their translational value due to Tau overexpression, and the frequent occurrence of motor deficits which prevent comprehensive behavioural assessments. In order to address these limitations, a forebrain-specific (CaMKIIα promoter), human mutated Tau (hTauP301L+R406W) knock-in mouse was generated out of the previously characterised PLB1Triple mouse, and named PLB2Tau. After confirmation of an additional hTau species (~60kDa) in forebrain samples, we identified age-dependent progressive Tau phosphorylation which coincided with the emergence of FTD relevant behavioural traits. In line with the non-cognitive symptomatology of FTD, PLB2Tau mice demonstrated early emerging (~6months) phenotypes of heightened anxiety in the elevated plus maze, depressive/apathetic behaviour in a sucrose preference test and generally reduced exploratory activity in the absence of motor impairments. Investigations of cognitive performance indicated prominent dysfunctions in semantic memory, as assessed by social transmission of food preference, and in behavioural flexibility during spatial reversal learning in a home cage corner-learning task. Spatial learning was only mildly affected and task-specific, with impairments at 12months of age in the corner learning but not in the water maze task. Electroencephalographic (EEG) investigations indicated a vigilance-stage specific loss of alpha power during wakefulness at both parietal and prefrontal recording sites, and site-specific EEG changes during non-rapid eye movement sleep (prefrontal) and rapid eye movement sleep (parietal). Further investigation of hippocampal electrophysiology conducted in slice preparations indicated a modest reduction in efficacy of synaptic transmission in the absence of altered synaptic plasticity. Together, our data demonstrate that the transgenic PLB2Tau mouse model presents with a striking behavioural and physiological face validity relevant for FTD, driven by the low level expression of mutant FTD hTau.


Assuntos
Comportamento Animal/fisiologia , Demência Frontotemporal/patologia , Potenciação de Longa Duração/genética , Memória/fisiologia , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Demência Frontotemporal/fisiopatologia , Técnicas de Introdução de Genes/métodos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Plasticidade Neuronal/genética , Transmissão Sináptica/genética , Tauopatias/patologia
17.
Cell Mol Life Sci ; 70(14): 2585-601, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23407662

RESUMO

Several genetically engineered models exist that mimic aspects of the pathological and cognitive hallmarks of Alzheimer's disease (AD). Here we report on a novel mouse model generated by targeted knock-in of transgenes containing mutated human amyloid precursor protein (APP) and microtubule-associated protein tau genes, inserted into the HPRT locus and controlled by the CaMKIIα regulatory element. These mice were crossed with an asymptomatic presenilin1A246E overexpressing line to generate PLB1Triple mice. Gene expression analysis and in situ hybridization confirmed stable, forebrain-specific, and gene-dose-dependent transgene expression. Brain tissue harvested from homozygous, heterozygous, and wild-type cohorts aged between 3 and 24 months was analyzed immunohistochemically and electrophysiologically. Homozygous PLB1Triple offspring presented with mostly intracellular cortical and hippocampal human APP/amyloid, first detected reliably at 6 months. Human tau was already uncovered at 3 months (phospho-tau at 6 months) and labeling intensifying progressively with age. Gene-dose dependence was confirmed in age-matched heterozygous females that accumulated less tau and amyloid protein. General excitability of hippocampal neurones was not altered in slices from PLB1Triple mice up to 12 months, but 2-year-old homozygous PLB1Triple mice had smaller synaptically evoked postsynaptic potentials compared with wild types. Synaptic plasticity (paired-pulse depression/facilitation and long-term potentiation) of synaptic CA1 pyramidal cell responses was deficient from 6 months of age. Long-term depression was not affected at any age or in any genotype. Therefore, despite comparatively subtle gene expression and protein build-up, PLB1Triple mice develop age-dependent progressive phenotypes, suggesting that aggressive protein accumulation is not necessary to reconstruct endophenotypes of AD.


Assuntos
Doença de Alzheimer/metabolismo , Hipocampo/patologia , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Envelhecimento , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Modelos Animais de Doenças , Eletrofisiologia , Feminino , Técnicas de Introdução de Genes , Genótipo , Hipocampo/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
18.
Cell Calcium ; 53(2): 125-38, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23218930

RESUMO

Store operated Ca(2+) entry (SOCE) replenishes intracellular Ca(2+) stores and activates a number of intracellular signalling pathways. Whilst several molecular components forming store operated Ca(2+) channels (SOCC) have been identified, their modulation in neurons remains poorly understood. Here, we extend on our previous findings and show that neuronal SOCE is modulated by tyrosine phosphorylation. Cyclopiazonic acid induced SOCE was characterised in hippocampal cultures derived from forebrain specific protein tyrosine phosphatase 1B knockout (PTP1B KO) mice and wild type (WT) litter mates using Fura-2 Ca(2+) imaging. PTP1B KO cultures expressed elevated SOCE relative to WT cultures without changes in cytoplasmic Ca(2+) homeostasis or depolarisation-induced Ca(2+) influx. WT and PTP1B KO cultures displayed similar pharmacological sensitivities towards the SOCE inhibitors gadolinium and 2-aminoethoxydiphenyl borate, as well as the tyrosine kinase inhibitor Ag126 indicating an augmentation of native SOCCs by PTP1B. Following store depletion WT culture homogenates showed heightened phospho-tyrosine levels, an increase in Src tyrosine kinase activation and two minor PTP1B species. These data suggest tyrosine phosphorylation gating SOCE, and implicate PTP1B as a key regulatory enzyme. The involvement of PTP1B in SOCE and its relation to SOCC components and mechanism of regulation are discussed.


Assuntos
Cálcio/metabolismo , Hipocampo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Compostos de Boro/farmacologia , Células Cultivadas , Fura-2/química , Gadolínio/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Tirfostinas/farmacologia
19.
Cell Calcium ; 46(1): 39-48, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19423160

RESUMO

The regulation of intracellular Ca(2+) signalling by phosphorylation processes remains poorly defined, particularly with regards to tyrosine phosphorylation. Evidence from non-excitable cells implicates tyrosine phosphorylation in the activation of so-called store-operated Ca(2+) channels (SOCCs), but their involvement in neuronal Ca(2+) signalling is still elusive. In the present study, we determined the role of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs) in the coupling between intracellular Ca(2+) stores and SOCCs in neonatal rat hippocampal neurons by Fura-2 Ca(2+) imaging. An early Ca(2+) response from intracellular stores was triggered with thapsigargin, and followed by a secondary plasma membrane Ca(2+) response. This phase was blocked by the non-specific Ca(2+) channel blocker NiCl and the SOCC blocker, 2-aminoethoxydiphenyl borate (2-APB). Interestingly, two structurally distinct PTK inhibitors, genistein and AG126, also inhibited this secondary response. Application of the PTP inhibitor sodium orthovanadate (OV) also activated a sustained and tyrosine kinase dependent Ca(2+) response, blocked by NiCl and 2-APB. In addition, OV resulted in a Ca(2+) store dependent enhancement of NMDA responses, corresponding to, and occluding the signalling pathway for group I metabotropic glutamate receptors (mGluRs). This study provides first evidence for tyrosine based phospho-regulation of SOCCs and NMDA signalling in neurons.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Compostos de Boro/farmacologia , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Genisteína/farmacologia , Hipocampo/enzimologia , Homeostase/efeitos dos fármacos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosforilação , Cloreto de Potássio/farmacologia , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Tapsigargina/farmacologia , Vanadatos/farmacologia
20.
J Neurochem ; 102(4): 1009-23, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17442047

RESUMO

Kinases and phosphatases act antagonistically to maintain physiological phosphorylation/dephosphorylation at numerous intracellular sites critical for neuronal signalling. In this study, it was found that inhibition of serine/threonine phosphatases by exposure of hippocampal slices to okadaic acid (OA) or cantharidin (CA; 100 nmol/L) for 2 h resulted in reduced basal synaptic transmission and blocked the induction of synaptic plasticity in the form of long-term potentiation as determined by electrophysiological analysis. Fura-2 Ca(2+) imaging revealed a bidirectional modulation of N-methyl-D-aspartate (NMDA) -mediated Ca(2+) responses and reduced KCl-mediated Ca(2+) responses in neonatal cultured hippocampal neurons after phosphatase inhibition. While OA inhibited NMDA-induced Ca(2+) influx both acutely and after incubation, CA-enhanced receptor-mediated Ca(2+) signalling at low concentrations (1 nmol/L) but reduced NMDA and KCl-mediated Ca(2+) responses at higher concentrations (100 nmol/L). Changes in Ca(2+) signalling were accompanied by increased phosphorylation of cytoskeletal proteins tau and neurofilament and the NMDA receptor subunit NR1 in selective treatments. Incubation with OA (100 nmol/L) also led to the disruption of the microtubule network. This study highlights novel signalling effects of prolonged inhibition of protein phosphatases and suggests reduced post-synaptic signalling as a major mechanism for basal synaptic transmission and long-term potentiation impairments.


Assuntos
Sinalização do Cálcio/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cantaridina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Técnicas In Vitro , N-Metilaspartato/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Okadáico/farmacologia , Técnicas de Patch-Clamp/métodos , Cloreto de Potássio/farmacologia , Ratos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Fatores de Tempo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...